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Quantum logical operations using two-dimensional NMR have been used (3). Several workers have contributed to quan
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recently been described using the scalar coupling evolution tech-
nique [J. Chem. Phys. 109, 10603 (1998)]. In the present paper, we
describe the implementation of quantum logical operations using
two-dimensional NMR, with the help of spin- and transition-
selective pulses. A number of logic gates are implemented using
two and three qubits with one extra observer spin. Some many-
in-one gates (or Portmanteau gates) are also implemented. Toffoli
gate (or AND/NAND gate) and OR/NOR gates are implemented
on three qubits. The Deutsch–Jozsa quantum algorithm for one
and two qubits, using one extra work qubit, has also been
implemented using spin- and transition-selective pulses after
creating a coherent superposition state in the two-dimensional
methodology. © 2001 Academic Press

Key Words: two-dimensional NMR; quantum computation;
logic gate; Toffoli gate; Deutsch–Jozsa algorithm.

INTRODUCTION

Quantum computing exploits the intrinsic quantum natur
physical systems and is therefore more powerful than clas
computing for a certain class of problems. While some p
lems like factorization gain exponential speed up (1), some

thers like database-search gain polynomial speed up (2). A
quantum computer works on two-level quantum syst
known as “quantum bits” or “qubits.” The fact that qubits
exist in a coherent superposition of basis states is exploit
a quantum computer. However, retaining such a coheren
perposition for a long enough time is one of the major hur
in quantum computation. Since nuclear spins in liquids
efficiently isolated from the rest of their environment,
coherent superposition lasts for several hundreds of mill
onds. Therefore, high-resolution NMR of weakly coupled
clear spins in liquids is one of the potential candidates for
studies. Nuclear spins withI 5 1

2 have generally been used,
ecently, a quadrupole nuclear spin system withI 5 3

2 has also

1 To whom correspondence should be addressed. E-mail: aniln
hysics.iisc.ernet.in.
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information processing using NMR (4–32).
Recently, logical gates have also been demonstrated

two-dimensional NMR (33). In the two-dimensional metho
the states of the “computation” spins (or input spins)
encoded by the transitions of an extra “observer” spin (Fig
The observer spin is first allowed to evolve for a timet 1 during

hich the input qubits remain in their initial state (Fig.
fter the frequency labeling periodt 1, the computation i

performed on the input qubits. The observer spin is a
allowed to evolve for a timet 2 and detected. The experime
starts from a mixed input state, the computation is perfor
simultaneously on all the input states, and one gets a m
output state. One can also create a superposition of input q
in the beginning of the experiment by applying ap/2 pulse on
the input qubits and subsequently killing the coherence
gradient pulse (33). Various steps in two-dimensional NM

amely preparation, evolution, mixing, and detection, ha
lose correspondence with the steps in quantum comp
amely creation of initial states, labeling of the initial sta
omputation, and reading of output states, respectively33)
Fig. 2). In this respect, two-dimensional NMR offers so
dvantages. One of the advantages of the two-dimens
ethod is that it resolves all of the input and the output s
nd correlates them. This correlation between input and o
tates in the two-dimensional experiment makes the res
he computation graphic. For example, a SWAP gate, w
xchanges the states of two qubits, can be implement
MR by selectively interchanging populations of zero-qu

um levels. Since the one-dimensional NMR spectrum
omonuclear spins after the execution of a SWAP ga

ndistinguishable from that of an equilibrium spectrum,
ne-dimensional SWAP gate was earlier demonstrated aft
reation of a nonequilibrium state (25, 34). However, as will b
hown here (Fig. 3) and has been demonstrated earlier (33), the
wo-dimensional method starts from the equilibrium state
ields a spectrum characteristic of the SWAP gate.
Two-dimensional logic gates have been carried out so f

sing the scalar coupling evolution technique (33). This pape
@
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describes a two-dimensional NMR implementation of sev
two- and three-qubit gates with one extra observer spin, u
spin- and transition-selective pulses. The first implement
of the Deutsch–Jozsa quantum algorithm using two-dim
sional NMR is also demonstrated here. One of the advan
of the selective pulse method is that it makes the comput
simple and straightforward.

EXPERIMENTAL

A. Logic Gates

A weakly coupled three-spin system (I0I1I2) can be viewed a
combination of two two-spin subsystems with the observer

I0) being in state 0 or 1 (Fig. 1). There are four observer
transitions labeled 11, 10, 01, and 00, which correspond t
states of the input qubits (I1I2) in these transitions. During t
computation (mixing) period, various transitions of the in
qubits are inverted, yielding various gates as listed in Table 1
results of 24 one-to-one reversible gates for the three-spin s
having one observer and two input qubits are shown in Fig. 3
NOP gate is implemented by doing no operation during
computation period. In this gate, each input state correspon
same output state after the computation. Various NOT gate
implemented by inverting one or both of input qubits (I1, I2), using
pin-selectivep pulses. XOR (or control-NOT) and XNOR ga

are implemented by inverting two similar transitions of the s
input spin, one in each subsystem. We label XOR and XN
gates as XOR1, XNOR1 and XOR2, XNOR2 depending
whether the result of the operation is stored on spinI1 or I2,
espectively. For example, the XOR1 gate is implemente
nverting transitions 001–011 and 101–111 ofI1 and the result o
the gate is stored onI1 (Table 1, Fig. 3). A SWAP gate can
implemented by selectively interchanging the populations of
quantum levels of each subsystem (Table 1, Fig. 3). This c

FIG. 1. Energy level diagram of a three-spin system (I 0I 1I 2) showing two
two-spin subsystems corresponding to states 0 and 1 of observer spinI 0. The
transitions ofI 0 are labeled by the states of input qubits (I 1I 2).
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noncommutingp pulses on regressively connected transit
during the computation period (25, 34). It may be noted that whi
ll the gates of Ref. (33) are reproduced here, with several n
ates added, the methodology used for the computation is
nt except for the NOP and NOT gates.
Although a few basic gates such as NOT, AND, OR, and X

re sufficient to carry out a given computation, other gates ar
seful since they may reduce the number of pulses. The
Portmanteau gates” which perform more than one operation
een implemented in one-dimensional NMR using sele
ulses (25). Similar gates have been implemented here u

wo-dimensional NMR (Table 1, Fig. 3). Interchanging pop
ions of double-quantum levels using a cascade of noncomm

p pulses on progressively connected transitions leads
SWAP 1 NOT gate (Table 1, Fig. 3). SWAP1 XOR and

WAP1 XNOR gates have been implemented by inverting
airs of regressively connected transitions in each case (Ta
ig. 3). Similarly, SWAP1 NOT 1 XOR and SWAP1 NOT 1
NOR gates have been implemented by inverting two pai
rogressively connected transitions (Table 1, Fig. 3). The l
ates in Fig. 3 are direct combinations of two gates. It ma
oted that the 24 gates shown in Fig. 3 form a complete s

wo-qubit one-to-one mappings.
Figure 4 shows several three-qubit gates implemented

our-spin system, using selective pulses. Once again, no ope
uring computation period yields the NOP gate and inverting

1 yields the NOT(I1) gate. The more interesting ones are
Toffoli gate (or AND/NAND gate) and the OR/NOR gate. T
operations of Toffoli and OR/NOR gates (33, 35) are, respectively

us, t, u& 3 us % ~t ` u!, t, u& [1]

FIG. 2. Pulse scheme for the two-dimensional NMR implementatio
quantum computing. The close correspondence between two-dimen
NMR and quantum computing is shown.I 0 is the observer spin andI 1 andI 2

are the input qubits. The gradient pulseGz eliminates the unwanted transve
agnetization before the computation.
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Various Logic Gates with Boolean Algebra, Truth Table, and Operations Performed

Gatea In Out Transitions invertedb Gatea In Out Transitions invertedb

NOP 11 11 No operation NOT (I 1) 11 01 All transitions ofI 1

us, t& 3 us, t& 10 10 us, t& 3 us#, t& 10 00
01 01 01 11
00 00 00 10

NOT (I 2) 11 10 All transitions ofI 2 NOT (I 1, I 2) 11 00 All transitions ofI 1 and I 2

us, t& 3 us, t#& 10 11 us, t& 3 us, t& 10 01
01 00 01 10
00 01 00 11

XOR1 11 01 1117 101 XOR2 11 10 1117 110
us, t& 3 us Q t, t& 10 10 0117 001 us, t& 3 us, s Q t& 10 11 0117 010

01 11 01 01
00 00 00 00

XNOR1 11 11 1007 110 XNOR2 11 11 1017 100
us, t& 3 us Q t, t& 10 00 0007 010 us, t& 3 us, s Q t& 10 10 0017 000

01 01 01 00
00 10 00 01

SWAP 11 11 Invert ZQ: SWAP1 NOT 11 00 Invert DQ:
us, t& 3 ut, s& 10 01 1107 111 us, t& 3 ut, s& 10 10 1107 111

01 10 0107 011 01 01 0107 011
00 00 1017 111 00 11 1007 110

0017 011 0007 010
1107 111 1107 111
0107 011 0107 011

SWAP 1 XOR1 11 01 1017 111 SWAP1 XOR2 11 10 1107 111
us, t& 3 us Q t, s& 10 11 0017 011 us, t& 3 ut, s Q t& 10 01 0107 011

01 10 1107 111 01 11 1017 111
00 00 0107 011 00 00 0017 011

SWAP 1 XNOR1 11 11 1007 110 SWAP1 XNOR2 11 11 1007 101
us, t& 3 us Q t, s& 10 01 0007 010 us, t& 3 ut, s Q t& 10 00 0007 001

01 00 1007 101 01 10 1007 110
00 10 0007 001 00 01 0007 010

SWAP 1 NOT 1 XOR1 11 00 1017 111 SWAP1 NOT 1 XOR2 11 00 1107 111
us, t& 3 us# Q t#, s#& 10 10 0017 011 us, t& 3 ut#, s# Q t#& 10 11 0107 011

01 11 1007 101 01 01 1007 110
00 01 0007 001 00 10 0007 010

SWAP 1 NOT 1 XNOR1 11 10 1007 110 SWAP1 NOT 1 XNOR2 11 01 1007 101

us, t& 3 us# % t## , s#& 10 00 0007 010 us, t& 3 ut#, s# % t## & 10 10 0007 001
01 01 1107 111 01 00 1017 111
00 11 0107 011 00 11 0017 011

NOT (I 1) 1 XOR2 11 01 All I 1 transitions and NOT (I 2) 1 XOR1 11 10 All I 2 transitions and
us, t& 3 us#, s# Q t& 10 00 1117 110 us, t& 3 us Q t#, t#& 10 01 1117 101

01 10 0117 010 01 00 0117 001
00 11 00 11

NOT(I 1) 1 XNOR2 11 00 All I 1 transitions and NOT (I 2) 1 XNOR1 11 00 All I 2 transitions and

us, t& 3 us#, s# % t# & 10 01 1017 100 us, t& 3 us % t## , t# & 10 11 1007 110
01 11 0017 000 01 10 0007 010
11 10 00 01

SWAP1 NOT (I 1) 11 01 Invert ZQ and all transitions ofI 1 SWAP1 NOT (I 2) 11 10 Invert ZQ and all transitions ofI 2

us, t& 3 ut#, s& 10 11 us, t& 3 ut, s#& 10 00
01 00 01 11
00 10 00 01

a us, t& represents the state of input qubits (I 1, I 2).
b Order of transitions is important as all transitions may not commute.
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98 MAHESH ET AL.
and

us, t, u& 3 us % ~t ~ u!, t, u&, [2]

hereQ [ addition modulo 2,̀ [ AND, ~ [ OR, ands, t,
ndu are the states of the control spinI 1 and the input spinsI 2

andI3. The Toffoli gate is a universal gate for reversible com-
ation. This gate can be implemented by inverting the control
ransitions 011 and 111, by using a pair of transition-selectip
pulses. Inverting all transitions of the control spin except
transitions 010 and 110 leads to the OR/NOR gate (Fig. 4)

B. The Deutsch–Jozsa Algorithm

The Deutsch–Jozsa (DJ) algorithm demonstrates the pow
quantum computing over classical computing (36). In this algo-

FIG. 3. 1H NMR spectrum (b) of 2,3-dibromopropionic acid (a) in CDC3 r
pectra corresponding to various gates implemented using spin- and transit
ubits (I1, I2) inverted during the computation are listed in Table 1. The spin-

Low-power rectangular/Gaussian pulses were utilized for various gates. Th
to pulse imperfections. All experiments were carried out in the time domain w
Zero filling to 5123 512 complex data points was done prior to 2D Fourie
in

e

of

rithm, we consider functions fromN-bit domain space to one-b
range space. A function is called constant if it gives the s
output for any input and is called balanced if it gives one ou
for half the number of inputs and another for the remaining
Given anN-bit binary function which is either constant or b
anced, classically up to 2(N21) 1 1 operations are required
determine whether the function is constant or balanced, wh
the DJ algorithm requires only a single evaluation. The DJ
rithm has been implemented using one-dimensional NMR
several research groups (10, 11, 18, 25).

In the Cleve version of the DJ algorithm (37), a binary
unction f is encoded in a unitary transformation by
ropagator U f by including an extra work qubit suc

that

rded on a Bruker DRX-500 spectrometer at 300 K. (c) Shows observer sI0)
selective pulses. The pulse scheme used is shown in Fig. 2 and varioustransitions of inpu
ctive pulses were 10 ms long and the transition-selective pulses were 100–long.
ase of the computation pulses was cycled through (x, 2x) to suppress the distortions d
2561 values and 256 complex data points alongt2 and with two scans for eacht1 point.
nsformation. All plots are shown in magnitude mode.
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TABLE 2

99LOGIC GATES AND THE DEUTSCH–JOZSA QUANTUM ALGORITHM
ur &us&O¡

Uf

ur % f~s!&us&, [3]

hereur & andus& are, respectively, the states of work qubit (I 0)
and input qubit (I 1). The four possible functions for the sing
bit DJ algorithm are listed in Table 2. This algorithm has b
implemented on the thermal equilibrium state and does
require the creation of a pure initial state (11, 25). The two-
dimensional pulse scheme used for implementing the DJ
rithm is shown in Fig. 5. The experiment begins with b

FIG. 4. 19F and 1H NMR spectra (b) of 2,3-difluro-6-nitrophenol (a)
CDCl3 (with one drop of D2O to induce the exchange of the hydroxy pro

nd hence to suppress its coupling to flourine nuclei) recorded on a B
RX-500 spectrometer at 300 K. (c) Shows19F spectra of observer spinI 0

corresponding to various gates. The pulse scheme used is shown in Fig
various transitions of control qubitI 1 inverted during the computation peri

re described in the text. The spin-selective pulses were 1 ms long a
ransition-selective pulses were 200 ms long. The phase of the compu
ulses was cycled through (x, 2x) to suppress distortions due to pu

imperfections. All experiments were carried out in the time domain with
t 1 values and 256 complex data points alongt 2 and two scans for eacht 1 point.
Zero filling to 10243 1024 complex data points was done prior to 2D Fou
transformation. All plots are shown in magnitude mode.
qubits in a superposition of states, achieved by a nonsele
(p/ 2)y pulse. This is followed by an evolution periodt 1,
propagatorUf, and detection periodt 2. The transformation
corresponding tof 1 and f 2 are, respectively, a unity operati
and a spin-selectivep x pulse on the work qubit. The transfo-
mations corresponding tof 3 and f 4 are implemented by tra-
sition-selectivep x pulses, respectively, on the 10–11
00–01 transitions of the work qubit (25). The results of th

lgorithm for all four functions are shown in Fig. 6. T
onstant or balanced nature of the function is identified b
resence or absence of signal from the input qubit (I 1) (Fig. 6)

(25). The expected signals are also shown schematically in
. For two of the functionsf 2 and f 4, the expected signals a

calculated in Table 3. The spin states (ur &us&) before compu
tation can be paired (connected by a curved line) in such a
that each pair represents a transition of the input qubitI 1).
Each transition of the input qubit is labeled by the state o
remaining spin, i.e., work qubit. Corresponding output pai
spin states after computation can be calculated by using
pression [3]. From each output pair, the corresponding tr
tion of the input spin after computation can be identified. If
spins have flipped in the output pair, then the transition
comes nonobservable and will be labeled as zero qua
(ZQ) or double quantum (DQ).
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The Four Possible Binary Functions ( f1–f4)
for One-Bit DJ Algorithm

s

Const. Bal.

f 1 f 2 f 3 f 4

0 0 1 0 1
1 0 1 1 0
n
ot

o-FIG. 5. Pulse scheme for the two-dimensional NMR implementatio
the DJ algorithm.I 0 is the work qubit andI 1 and I 2 are the input qubits.
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100 MAHESH ET AL.
Implementing the DJ algorithm on two input qubits requ
three qubits including one work qubit. The algorithm can
described as

FIG. 6. 1H NMR spectrum (a) of 5-nitrofuraldehyde (b) in C6D6 on a
Bruker DRX-500 spectrometer at 300 K. The results of the DJ algorithm
various functionsf 1–f 4 in Table 2 are shown in (c).I 0 is the work qubit andI 1

is the input qubit. Expansions of theI 1 parts of the spectra are shown in do
boxes. The expected pattern is also shown in each case. The expected
for f 2 and f 4 are described in Table 3. The spin-selective pulses were 1
ong and the transition-selective pulses were 100 ms long. The phase
omputation pulses was cycled through (x, 2x) to suppress the distortions d

to pulse imperfections. All experiments were carried out in the time do
with 256t 1 values and 512 complex data points alongt 2 and two scans for ea
t 1 point. Zero filling to 5123 512 complex data points was done prior to

ourier transformation. All plots are shown in magnitude mode.
s
e

ur &us&ut&O¡

Uf

ur % f~s, t!&us&ut&, [4]

hereur&, us&, andut& are the states of the work qubit (I0) and of two
nput (I1, I2) qubits, respectively. The eight possible two-bit bin
functions are listed in Table 4. The pulse scheme is the sa
that in Fig. 5. Once again, the transformations correspondingf1

and f2 are, respectively, unity operation and a spin-selectivpx

pulse on the work qubit. The unitary transformations encodin
six balanced functionsf3–f8 are implemented by selective pul
on the transitions of the work qubit, taken two at a time, i.e
0, p, p], [p, p, 0, 0], [p, 0, p, 0], [0, p, 0, p], [p, 0, 0,p], and
0, p, p, 0], where 0 denotes no pulse on that particular trans
(11, 25). The results of the algorithm for all eight functions
shown in Fig. 7. Once again, a function is constant only if sig
from all the input qubits are present, otherwise the functio
balanced (Fig. 7) (11, 25). Table 5 describes the input–out
correlation forf2 andf4 in a two-qubit DJ algorithm. Here thes-
and t-transitions are labeled by the statesur&ut& and ur&us&, respec
tively. Other details of Table 5 are similar to that of Table 3
r

terns
s

the

in

TABLE 4
The Eight Possible Binary Functions ( f1–f8)

for the Two-Bit DJ Algorithm

s t

Const. Bal.

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

0 0 0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 1 0 0 1
1 1 0 1 1 0 0 1 1 0
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101LOGIC GATES AND THE DEUTSCH–JOZSA QUANTUM ALGORITHM
CONCLUSIONS

Using two-dimensional NMR, several two- and thr
qubit gates have been implemented on three and four w
coupled spin systems and one- and two-qubit DJ algori
on two and three weakly coupled spin systems by utili
spin- and transition-selective pulses. The use of sele
pulses over scalar evolution has several advantages a

FIG. 7. The results of the DJ algorithm on 2,3-dibromopropionic acid (F
andI1 andI2 are the input qubits. Only expansions of theI1 andI2 parts of the sp
xpected patterns forf2 andf4 are described in Table 5. All experiments were
0 ms long and the transition-selective pulses were 100–300 ms long. The

to pulse imperfections. A total of 1024 complex data points alongt2 were acquired
ata points was done prior to 2D Fourier transformation. All plots are show
-
kly

s
g
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ell

as some disadvantages. The advantages of selective
are that they lead to simple logic, need only a few pul
and work very well. The disadvantages are that one n
long low-power RF pulses during which relaxation and
inhomogeneity effects degrade the performance of the
lective pulses and that ideal selectivity may be difficul
achieve. Furthermore, for the selective pulse experim
one needs resolved transitions. However, many of t

. 3a and 3b) in CDCl3 for various functionsf1–f8 listed in Table 4.I0 is the work qubi
ra are shown. The expected pattern is also shown in each case for compa
ried out on a Bruker DRX-500 spectrometer at 300 K. The spin-selective p
ase of the computation pulses was cycled through (x, 2x) to suppress the distortions d
256t1 values with two scans for eacht1 point. Zero filling to 10243 1024 comple

n magnitude mode.
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102 MAHESH ET AL.
difficulties can be overcome by the use of heteronuc
spins such as15N, 13C, 19F, and31P, where the magnitudes
the spin–spin couplings are large, the transitions are
spread out, and selectivity is easier to achieve using p
of shorter durations. Further improvement can be achi
by orienting molecules in liquid crystal matrices (38, 39).
Attempts are continuing in these directions in our labora
as well as in others.
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