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Quantum logical operations using two-dimensional NMR have
recently been described using the scalar coupling evolution tech-
nique [J. Chem. Phys. 109, 10603 (1998)]. In the present paper, we
describe the implementation of quantum logical operations using
two-dimensional NMR, with the help of spin- and transition-
selective pulses. A number of logic gates are implemented using
two and three qubits with one extra observer spin. Some many-
in-one gates (or Portmanteau gates) are also implemented. Toffoli
gate (or AND/NAND gate) and OR/NOR gates are implemented
on three qubits. The Deutsch-Jozsa quantum algorithm for one
and two qubits, using one extra work qubit, has also been
implemented using spin- and transition-selective pulses after

been used3). Several workers have contributed to quantut
information processing using NMRI£32.

Recently, logical gates have also been demonstrated us
two-dimensional NMR 33). In the two-dimensional method,
the states of the “computation” spins (or input spins) a
encoded by the transitions of an extra “observer” spin (Fig. !
The observer spin is first allowed to evolve for a titpeluring
which the input qubits remain in their initial state (Fig. 2)
After the frequency labeling perioth, the computation is
performed on the input qubits. The observer spin is age
allowed to evolve for a timé, and detected. The experimen

creating a coherent superposition state in the two-dimensional
methodology. © 2001 Academic Press

Key Words: two-dimensional NMR; quantum computation;
logic gate; Toffoli gate; Deutsch-Jozsa algorithm.

starts from a mixed input state, the computation is perform
simultaneously on all the input states, and one gets a mix
output state. One can also create a superposition of input qu
in the beginning of the experiment by applying# pulse on
the input qubits and subsequently killing the coherence by
gradient pulse 33). Various steps in two-dimensional NMR,
namely preparation, evolution, mixing, and detection, have
close correspondence with the steps in quantum computi

Quantum computing exploits the intrinsic quantum nature gmely creation of initial states, labeling of the initial state
physical systems and is therefore more powerful than classigg}nputation' and reading of output states, respectiv@By (
computing for a certain class of problems. While some propeig. 2). In this respect, two-dimensional NMR offers som
lems like factorization gain exponential speed Up, Some advantages. One of the advantages of the two-dimensio
others like database-search gain polynomial speed?UpA( method is that it resolves all of the input and the output stat
quantum computer works on two-level quantum systemgd correlates them. This correlation between input and out
known as “quantum bits” or “qubits.” The fact that qubits cagtates in the two-dimensional experiment makes the result
exist in a coherent superposition of basis states is exploitedgia computation graphic. For example, a SWAP gate, whi
a quantum computer. However, retaining such a coherent &4changes the states of two qubits, can be implemented
perposition for a long enough time is one of the major hurdiggr by selectively interchanging populations of zero-quar
in quantum computation. Since nuclear spins in liquids afgm |evels. Since the one-dimensional NMR spectrum
efficiently isolated from the rest of their environment, th@omonuclear spins after the execution of a SWAP gate
coherent superposition lasts for several hundreds of milliS‘?ﬁdistinguishable from that of an equilibrium spectrum, th
onds. Therefore, high-resolution NMR of weakly coupled nyspe_dimensional SWAP gate was earlier demonstrated after
clear spins in liquids is one of the potential candidates for sugheation of a nonequilibrium stat2s, 34. However, as will be
studies. Nuclear spins with= 3 ha\{e generally peen used, buthown here (Fig. 3) and has been demonstrated e&Bgrthe
recently, a quadrupole nuclear spin system with 3 has also tyq-dimensional method starts from the equilibrium state al

yields a spectrum characteristic of the SWAP gate.

To whom correspondence should be addressed. E-mail: aniinmr@ I WO-dimensional logic gates have been carried out so far
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achieved by the use of a cascade of three transition-select
Jn noncommutings pulses on regressively connected transitior
0 Eeee during the computation perio@%, 39. It may be noted that while
all the gates of Ref.33) are reproduced here, with several ne\
i gates added, the methodology used for the computation is diff
o e ent except for the NOP and NOT gates.
He Yo e i Although a few basic gates such as NOT, AND, OR, and XQO
R 010 e 100 are sufficient to carry out a given computation, other gates are
: i useful since they may reduce the number of pulses. Theref
e =00 “Portmanteau gates” which perform more than one operation h:
000 .- been implemented in one-dimensional NMR using selecti
pulses 25). Similar gates have been implemented here usil
FIG. 1. Energy level diagram of a three-spin systdni {1 ,) showing two t\_No_dlmenSIO”al NMR (Table 1, Flg' 3). Interchanging popul:
two-spin subsystems corresponding to states 0 and 1 of observdr, spine tions of double-quantum levels using a cascade of noncommut
transitions ofl , are labeled by the states of input qubitsl §). 7 pulses on progressively connected transitions leads to
SWAP + NOT gate (Table 1, Fig. 3). SWAR XOR and
SWAP + XNOR gates have been implemented by inverting tw
pairs of regressively connected transitions in each case (Tabls
. . . . . Fig. 3). Similarly, SWAP+ NOT + XOR and SWAP+ NOT +
describes a two-dimensional NMR implementation of severglior gates have been implemented by inverting two pairs

two- and three-qubit gates with one exira observer spin, us H)gressively connected transitions (Table 1, Fig. 3). The las

spin- and transition-selective pulses. The first implementati Qtes in Fig. 3 are direct combinations of two gates. It may |

of the Deutsch-Jozsa quantum algorithm using two-dimeflsiq yat the 24 gates shown in Fig. 3 form a complete set
sional NMR is also demonstrated here. One of the advantagg%_(wbit one-to-one mappings

of the selective pulse method is that it makes the computationFigure 4 shows several three-qubit gates implemented of

simple and straightforward. four-spin system, using selective pulses. Once again, no opera
during computation period yields the NOP gate and inverting sy
I, yields the NOTL;) gate. The more interesting ones are th
Toffoli gate (or AND/NAND gate) and the OR/NOR gate. The
operations of Toffoli and OR/NOR gate®3( 39 are, respectively,

-
-
e - ®

EXPERIMENTAL

A. Logic Gates

A weakly coupled three-spin systemjl(l,) can be viewed as
a combination of two two-spin subsystems with the observer spin s, t,upy = |s @ (t /\ u),t, u) [1]
(1) being in state 0 or 1 (Fig. 1). There are four observer spin
transitions labeled 11, 10, 01, and 00, which correspond to the
states of the input qubitd,(,) in these transitions. During the
computation (mixing) period, various transitions of the input

qubits are inverted, yielding various gates as listed in Table 1. The [ Prel’mﬁmj [ EVO'"“OHJ [ Mixing J ’ De‘ecti‘m—l
results of 24 one-to-one reversible gates for the three-spin system

having one observer and two input qubits are shown in Fig. 3. The 2y (/2)-y (120

NOP gate is implemented by doing no operation during the Iy H

computation period. In this gate, each input state corresponds to

same output state after the computation. Various NOT gates are 4 - 1
implemented by inverting one or both of input qublts (), using 1y C"“‘"“‘a""%
spin-selectiver pulses. XOR (or control-NOT) and XNOR gates

are implemented by inverting two similar transitions of the same G m

input spin, one in each subsystem. We label XOR and XNOR

gates as XOR1, XNOR1 and XOR2, XNOR2 depending on Creation Labelling Reading
whether the result of the operation is stored on dpir I, of initial ;| of Initial ||| Computation Quiput

respectively. For example, the XOR1 gate is implemented by

inverting transitions 001-011 and 101111 0énd the result of FIG. 2. Pulse scheme for the two-dimensional NMR implementation ¢
. . quantum computing. The close correspondence between two-dimensic
the gate Is stored oh (Table 1, Fig. 3)' A SWAP gate can beNMR and quantum computing is showin.is the observer spin arid andl ,

implemented by selectively interchanging the populations of zekge the input qubits. The gradient pulSe eliminates the unwanted transverse
guantum levels of each subsystem (Table 1, Fig. 3). This canraynetization before the computation.
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TABLE 1

Various Logic Gates with Boolean Algebra, Truth Table, and Operations Performed

97

Gaté' In Out Transitions inverted Gaté In  Out Transitions invertéd
NOP 11 11  No operation NOT () 11 01  All transitions ofl ,
[s, ) = s, t) 10 10 s, t) = [, t) 10 00
01 01 01 11
00 00 00 10
NOT (I,) 11 10 All transitions ofl, NOT (14, 15) 11 00 All transitions ofl, andl,
s, t) = |s, D) 10 11 s, t) = [s, t) 10 01
01 00 01 10
00 01 00 11
XOR1 11 01 111101 XOR2 11 10 11% 110
[s, t) > [sDt, t) 10 10 011« 001 s, t) = |s, sDt) 10 11 011« 010
01 11 01 01
00 00 00 00
XNOR1 11 11 100~ 110 XNOR2 11 11  10%> 100
s, ) > [sDt, 1) 10 00 000« 010 s, t) = |s, s t) 10 10 001« 000
01 01 01 00
00 10 00 01
SWAP 11 11 Invert ZQ: SWAP- NOT 11 00 Invert DQ:
s, ty = |t, s) 10 01 110« 111 s, t) = [t, ) 10 10 110« 111
01 10 010« 011 01 01 016~>011
00 00 101« 111 00 11 1006~ 110
001« 011 000<> 010
110« 111 110« 111
010« 011 010« 011
SWAP + XOR1 11 01 101« 111 SWAP+ XOR2 11 10 110111
[s, ) > |sDt, s) 10 11 001« 011 [s, t) = |t, sDt) 10 01 0lo«< 011
01 10 110« 111 01 11 10k 111
00 00 010« 011 00 00 001 011
SWAP + XNOR1 11 11 100~ 110 SWAP+ XNOR2 11 11 100~ 101
[s, ) > |sDt, s) 10 01 000« 010 [s, t) = |t, s 1) 10 00 000« 001
01 00 100« 101 01 10 1006~ 110
00 10 000« 001 00 01 006G~ 010
SWAP + NOT + XOR1 11 00 101~ 111 SWAP+ NOT + XOR2 11 00 110~ 111
s, t) > [s@t, 3 10 10 001« 011 s, t) > [t, 5D 1) 10 11 010« 011
01 11 100« 101 01 01 106~ 110
00 01 000« 001 00 10 00G~ 010
SWAP + NOT + XNOR1 11 10 100~ 110 SWAP+ NOT + XNOR2 11 01 100~ 101
s, t) > [|s® t,3) 10 00 000« 010 [s,t) > |t,5 ® t) 10 10 000« 001
01 01 110<~111 01 00 10111
00 11 010~ 011 00 11 00011
NOT (I,) + XOR2 11 01  Alll, transitions and NOT (I,) + XOR1 11 10  Alll, transitions and
s, t) > [5,5Dt) 10 00 111« 110 s, t) = |sDT, ) 10 01 111101
01 10 011« 010 01 00 01% 001
00 11 00 11
NOT(l,) + XNOR2 11 00 All'l, transitions and NOT (I,) + XNORL 11 00 All 1, transitions and
s, t) >[5, @ t) 10 01 101« 100 s,y > |s @ 1,1) 10 11 100« 110
01 11 001« 000 01 10 00G~ 010
11 10 00 01
SWAP + NOT (I,) 11 01 Invert ZQ and all transitions 6f  SWAP + NOT (I,) 11 10 Invert ZQ and all transitions ©f
s, t) = |t, s) 10 11 s, ty —|t, 5) 10 00
01 00 01 11
00 10 00 01

%|s, t) represents the state of input qubits, (I ,).

® Order of transitions is important as all transitions may not commute.
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FIG. 3. H NMR spectrum (b) of 2,3-dibromopropionic acid (a) in CB@corded on a Bruker DRX-500 spectrometer at 300 K. (c) Shows observet gpin
spectra corresponding to various gates implemented using spin- and transition-selective pulses. The pulse scheme used is shown in Fig t2asiicasiofigput
qubits (,, |,) inverted during the computation are listed in Table 1. The spin-selective pulses were 10 ms long and the transition-selective pulses were [b®@-30
Low-power rectangular/Gaussian pulses were utilized for various gates. The phase of the computation pulses was cycleg thiptagsuppress the distortions due
to pulse imperfections. All experiments were carried out in the time domain with, 86ies and 256 complex data points alorand with two scans for eathpoint.
Zero filling to 512X 512 complex data points was done prior to 2D Fourier transformation. All plots are shown in magnitude mode.

and rithm, we consider functions fromN-bit domain space to one-bit
range space. A function is called constant if it gives the sar
s LW~ s © (v u),t ), [2] output for any input and is called balanced if it gives one outp
where® = addition modulo 2/\ = AND, \/ = OR, ands, t, for half the nl_Jmper of input.s and famo.ther. for the remaining ha
andu are the states of the control spinand the input spink, Given anN-b|_t binary function which is e!ther constant_or bal
andl,. The Toffoli gate is a universal gate for reversible compi@nced, classically up to“2” + 1 operations are required to
tation. This gate can be implemented by inverting the control sgi§termine whether the function is constant or balanced, wher
transitions 011 and 111, by using a pair of transition-selectivethe DJ algorithm requires only a single evaluation. The DJ alg
pulses. Inverting all transitions of the control spin except tH&hm has been implemented using one-dimensional NMR
transitions 010 and 110 leads to the OR/NOR gate (Fig. 4). Several research group) 11, 18, 2k
In the Cleve version of the DJ algorithn3%), a binary
function f is encoded in a unitary transformation by th
The Deutsch—Jozsa (DJ) algorithm demonstrates the powepodpagator U; by including an extra work qubit such
guantum computing over classical computi@@)( In this algo- that

B. The Deutsch—-Jozsa Algorithm
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FIG. 4.

¥F and*H NMR spectra (b) of 2,3-difluro-6-nitrophenol (a) in
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TABLE 2
The Four Possible Binary Functions (f,—f,)
for One-Bit DJ Algorithm

Const. Bal.
s f, f, fy f,
0 0 1 0 1
1 0 1 1 0

qubits in a superposition of states, achieved by a nonselect
(m/2), pulse. This is followed by an evolution periad,
propagatorU;, and detection period,. The transformations
corresponding td, andf, are, respectively, a unity operatior
and a spin-selectiver, pulse on the work qubit. The transfor
mations corresponding th andf, are implemented by tran
sition-selective, pulses, respectively, on the 10-11 an
00-01 transitions of the work qubi2®). The results of the
algorithm for all four functions are shown in Fig. 6. The
constant or balanced nature of the function is identified by t
presence or absence of signal from the input qub)t (Fig. 6)
(25). The expected signals are also shown schematically in F
6. For two of the function$, andf,, the expected signals are
calculated in Table 3. The spin statgs)(s)) before compu-
tation can be paired (connected by a curved line) in such aw
that each pair represents a transition of the input quijt (
Each transition of the input qubit is labeled by the state of tl
remaining spin, i.e., work qubit. Corresponding output pairs |

CDCl, (with one drop of DO to induce the exchange of the hydroxy protorSPiN S_tates after computation Can_be calculated bY_USing E
and hence to suppress its coupling to flourine nuclei) recorded on a Bruggiession [3]. From each output pair, the corresponding tran

DRX-500 spectrometer at 300 K. (c) ShoW§ spectra of observer spin

corresponding to various gates. The pulse scheme used is shown in Fig. 2
various transitions of control qubit inverted during the computation period

tion of the input spin after computation can be identified. If tw
§‘ﬁﬂ1s have flipped in the output pair, then the transition b

are described in the text. The spin-selective pulses were 1 ms long and §¥Ne€S nonobservable and will be labeled as zero quant
transition-selective pulses were 200 ms long. The phase of the computaf{@{Q) or double quantum (DQ).

pulses was cycled throughx( —x) to suppress distortions due to pulse

imperfections. All experiments were carried out in the time domain with 1024

t, values and 256 complex data points aldpgnd two scans for eadh point.

Zero filling to 1024X 1024 complex data points was done prior to 2D Fourier

transformation. All plots are shown in magnitude mode.

(Preparation l Evolution ‘ Mixing J ‘ Detection I
Uf (T/2)y
[D]s) ——— [r @ f(9)]s), [3] 1,1, \ An
_ _ (n/2)y VAR
where|r) and|s) are, respectively, the states of work quibif)( 4 . t
and input qubit [,). The four possible functions for the single- To o ation
bit DJ algorithm are listed in Table 2. This algorithm has been - - -
. e Creation Labelling Reading
implemented on the thermal equilibrium state and does not of Initial of Initial Computation Output
require the creation of a pure initial statel( 25. The two- States states States

dimensional pulse scheme used for implementing the DJ algor|G. 5. Pulse scheme for the two-dimensional NMR implementation c
rithm is shown in Fig. 5. The experiment begins with botkhe DJ algorithml, is the work qubit and, andl, are the input qubits.
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TABLE 3

The Input-Output Correlations for the Functions f, and f,
of the One-Bit DJ Algorithm

In

s-Transitions

Out

> @ s}

s-Transitions

11
10
01
00

|r)ls)

s-Transitions

Js

01
00
11
10

|f4 S r)|s>

> 0
> 1

s-Transitions

11
10
01
00

_—c =0

11
00
01
10

DQ

>
>

zQ

7Q

<= 07

Us

D[Sy ———[r @ (s, 1)[9)[), [4]

wherer), |s), and|t) are the states of the work qubig{and of two
input (I, I,) qubits, respectively. The eight possible two-bit binar
functions are listed in Table 4. The pulse scheme is the same
that in Fig. 5. Once again, the transformations correspondifyg t
andf, are, respectively, unity operation and a spin-selectye
pulse on the work qubit. The unitary transformations encoding t
six balanced functiong— are implemented by selective pulse
on the transitions of the work qubit, taken two at a time, i.e., [
0, m, =, [m, m, 0, 0], [m, O, =, O, [0, 7, O, =, [, O, 0, 7], and
[0, 77, 77, 0], where 0 denotes no pulse on that particular transiti
(11, 25. The results of the algorithm for all eight functions ar
shown in Fig. 7. Once again, a function is constant only if signe
from all the input qubits are present, otherwise the function
balanced (Fig. 7)1(1, 25. Table 5 describes the input—outpu

FIG. 6. 'H NMR spectrum (a) of 5-nitrofuraldehyde (b) ins@; on a
Bruker DRX-500 spectrometer at 300 K. The results of the DJ algorithm f
various functiong,—f, in Table 2 are shown in (c), is the work qubit and,
is the input qubit. Expansions of the parts of the spectra are shown in dotted

boxes. The expected pattern is also shown in each case. The expected patterns

for f, andf, are described in Table 3. The spin-selective pulses were 10 ms

long and the transition-selective pulses were 100 ms long. The phase of the

computation pulses was cycled through ¢ x) to suppress the distortions due
to pulse imperfections. All experiments were carried out in the time domain

TABLE 4

correlation forf, andf, in a two-qubit DJ algorithm. Here the
andt-transitions are labeled by the stapedt) and|r)|s), respec-
?lvely. Other details of Table 5 are similar to that of Table 3.

The Eight Possible Binary Functions ( f;—f;)
for the Two-Bit DJ Algorithm

with 2561, values and 512 complex data points alongnd two scans for each
t; point. Zero filling to 512X 512 complex data points was done prior to 2D

Fourier transformation. All plots are shown in magnitude mode. s

Const.

Bal.

f,

f;

fs

fe

f;

fa

0

Implementing the DJ algorithm on two input qubits require$®
three qubits including one work qubit. The algorithm can b’{a
described as

= O FrFr o

O oOoo

s

PPk OO

O Or

OoOpFr O

= O Fr O

= OORF
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FIG. 7. The results of the DJ algorithm on 2,3-dibromopropionic acid (Figs. 3a and 3b) in.@@@arious functions,;—f; listed in Table 41, is the work qubit
andl; andl, are the input qubits. Only expansions of thandl, parts of the spectra are shown. The expected pattern is also shown in each case for comparisc
expected patterns fdy andf, are described in Table 5. All experiments were carried out on a Bruker DRX-500 spectrometer at 300 K. The spin-selective puls
10 ms long and the transition-selective pulses were 100—-300 ms long. The phase of the computation pulses was cycled thfptagbuppress the distortions due
to pulse imperfections. A total of 1024 complex data points atpngere acquired for 258 values with two scans for eathpoint. Zero filling to 1024x 1024 complex
data points was done prior to 2D Fourier transformation. All plots are shown in magnitude mode.

CONCLUSIONS as some disadvantages. The advantages of selective pu

are that they lead to simple logic, need only a few pulse

Using two-dimensional NMR, several two- and threeand work very well. The disadvantages are that one nee
gubit gates have been implemented on three and four wealdyg low-power RF pulses during which relaxation and R
coupled spin systems and one- and two-qubit DJ algorithimhomogeneity effects degrade the performance of the
on two and three weakly coupled spin systems by utilizingctive pulses and that ideal selectivity may be difficult t
spin- and transition-selective pulses. The use of selectigehieve. Furthermore, for the selective pulse experimen
pulses over scalar evolution has several advantages as wek needs resolved transitions. However, many of the
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TABLE 5
The Input—Output Correlations for the Functions f, and f, of the Two-Bit DJ Algorithm

In Out
s-Transitions [r)|s)|e) t-Transitions fo s-Transitions |2 ® rs)|t) t-Transitions
111 1 011
11 110 1 1 01 010 o1
10 101 1 00 001
100 10 1 000 00
011 1 111
01 010 o1 1 11 110 1
00 001 1 10 101
000 00 1 100 10
s-Transitions [r)|s)|e) t-Transitions fa s-Transitions |fs © r)|s)|) t-Transitions
111 " 0 111 "
11 110 0 DQ 110
10 101 1 DQ 001
100 10 1 000 00
011 0 011
01 010 o1 0 ZQ 010 o1
00 001 1 7Q 101
000 00 1 100 10

difficulties can be overcome by the use of heteronucledr N. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum

spins such aéSN, 13C, 19F, andslP, where the magnitudes of computation, Science 275, 350-356 (1997).

the spin—spin couplings are large, the transitions are weft 'L-I'-- dChE“angz L. 'Vt'-IK- \’I‘_"‘”‘i?rsy’?e”’ X ZthOU'ID' \'/YH LEl’iln(%J[, a”ggi'
.. . . . . oyd, erimental realization or a antum algorithm, Nature y

spread out, and selectivity is easier to achieve using pulses . % =XPe! et qrantiin £gor !

143-146 (1998).

of shorter durations. Further Improvement can be achleveg I. L. Chuang, N. Gershenfeld, and M. Kubinec, Experimental imple-

by orienting m0|e.CU|.eS i_n liquid C_rySt?-l ma_1trice38¢ 39. mentation of fast quantum searching, Phys. Rev. Lett. 80, 3408
Attempts are continuing in these directions in our laboratory 3411 (1998).
as well as in others. 8. I. L. Chuang, N. Gershenfeld, M. G. Kubinec, and D. W. Leung, Bulk

quantum computation with nuclear magnetic resonance: Theory
and experiment, Proc. R. Soc. Lond. A 454, 447-467 (1998).

9. J. A. Jones, R. H. Hansen, and M. Mosca, Quantum logic gates and

. nuclear magnetic resonance pulse sequences, J. Magn. Reson.
The use of 400- and 500-MHz FTNMR spectrometers of the Sophisticated 135, 353-360 (1998).
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